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Abstract. We investigate the critical behaviour of the fully packed O(n) loop model on the
square lattice in which each vertex is visited once by a loop. A transfer-matrix analysis shows
that this model can be interpreted as a superposition of a low-temperature O(n) model and an
solid-on-solid (SOS) model, as for the fully packed model on the honeycomb lattice. However,
not all of the critical exponents are the same for both lattices. In contrast, the fully packed
model on the triangular lattice appears to behave as a pure low-temperature O(n) model.

There has been a recent growth of interest in O(n) loop models [1] in the fully packed limit.
A loop model is ‘fully packed’ in the sense that empty vertices are excluded, with every
vertex visited once by a loop. Recent work on fully packed loop (FPL) models has been
confined to the honeycomb lattice, where exact results have been obtained by a number
of authors (see, e.g., [2–6] and references therein). In particular, the FPL model on the
honeycomb lattice defines a new universality class characterized by the superposition of a
low-temperature O(n) phase and a solid-on-solid (SOS) model at a temperature independent
of n [2]. The central charge, thermal and magnetic scaling dimensions are given by [2–6]

cH = 2 − 6(1 − g)2/g (1)

XH
ε = 3g/2 (2)

XH
σ = 1 − 1/(2g) (3)

wheren = −2 cosπg with g ∈ [ 1
2, 1] in the region of interest (06 n 6 2). The general set

of geometric or ‘magnetic’ scaling dimensions is [5, 6]

XH
2k−1 = 1

2g(k2 − k + 1) − (1 − g)2

2g
(4)

XH
2k = 1

2gk2 − (1 − g)2

2g
(5)

wherek = 1, 2, . . . , with XH
σ = XH

1 . These results are to be compared with those of the
so-called ‘densely packed’ loop (DPL) model on the honeycomb lattice, where the O(n)
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model is in a low-temperature phase [7]. In this case

cDPL = 1 − 6(1 − g)2/g (6)

XDPL
ε = 3g/2 − 1 (7)

XDPL
σ = 1 − 3g/8 − 1/2g (8)

and the geometric dimensions are given by [8]

XDPL
k = 1

8gk2 − (1 − g)2

2g
(9)

or XDPL
k = 210,k/2 in terms of the Kac formula. HereXDPL

σ = XDPL
1 .

Figure 1. A typical fully packed loop configuration on the periodic square lattice of width
N = 6. Also shown is the A sublattice and the corresponding six-vertex model configuration
for the mapping of the FPL model atn = 1 onto the ice model.

In this letter we investigate the FPL model on the square lattice. There are several
motivations for this study. First, the FPL model describes Hamiltonian walks in the limit
n = 0. Hamiltonian walks are self-avoiding walks which visit each site of a given lattice
and thus completely fill the available space. They thus describe the configurational statistics
of compact or collapsed polymers. Atn = 0 (g = 1

2) the above results givecH = −1 and

XH
2k−1 = 1

4(k2 − k) (10)

XH
2k = 1

4(k2 − 1). (11)

Thus on the honeycomb lattice the ‘compact’ exponents,ν = 1
2 andγ H = 1, follow from

XH
1 = XH

2 = 0 in the usual way (using 1/ν = 2 − X2 andγ = 2(1 − X1)ν). However, the
situation is different for densely packed walks wherecDPL = −2 and

XDPL
2k−1 = − 3

16 + 1
4(k2 − k) (12)

XDPL
2k = 1

4(k2 − 1). (13)

In this caseν = 1
2 and γ DPL = 19

16†. On the other hand, for Hamiltonian walks on the
Manhattan lattice,ν = 1

2 and γ Man = 1 [11]. It is thus of interest to investigate the

† However, care must be taken in the interpretation of theγ exponents. The DPL value has been interpreted as
a difference between walk and polygon extropic exponents rather than the straight walk value [9, 10].
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universality of Hamiltonian walks on the square lattice. A further motivation is a mapping
of the FPL model onto a SOS model [2, 3, 6, 12] as given below.

The partition function of the FPL model is simply

Z =
∑

nN (14)

wheren is the fugacity of a closed loop andN is the total number in a given configuration.
The sum is over all configurations of closed and non-intersecting loops on the square lattice,
such that every vertex is visited once (see figure 1). There are two types of allowed vertices,
representing straight loop segments and 90◦ turns. Both types have equal weights. We take
periodic boundary conditions across a strip of widthN and unless indicated otherwise, we
takeN even. In spite of the non-local weights occurring in the loop model, a transfer matrix
can be constructed [13]. The transfer-matrix index is a numeric coding of the way in which
the dangling bonds on the surface of the lattice are interconnected by loop segments. The
allowed vertex loop configurations are shown in figure 2(a). In general the sectors of the
transfer matrix are characterized by the numbernd of dangling bonds. The partition sum
(14) can also be realized in terms of a local three-state vertex model. The 12 allowed arrow
configurations and their corresponding Boltzmann weights are shown in figure 2(b). Here
the two phase factorss ands−1 are chosen such thatn = s + s−1 and a seam is introduced
in the usual way (see, e.g., [5]) to coincide with thend = 0 sector.

Figure 2. (a) The allowed loop configurations at a vertex. Each vertex has unit Boltzmann
weight. (b) The allowed arrow configurations of the corresponding three-state vertex model.
Each vertex, apart from the two indicated, has unit weight.

Numerical results
Unlike the FPL model on the honeycomb lattice, the square lattice model does not appear
to be exactly solvable. Nevertheless, accurate estimates of the central charge and scaling
dimensions can be obtained via the transfer matrix eigenvalues. In particular, the largest
eigenvalueλ0 determines the finite-size free energy viafN = N−1 logλ0 with [14, 15]

fN ' f∞ + πc

6N2
(15)

wheref∞ is the bulk free energy andc is the central charge. On the other hand, the scaling
dimensionsXi are related to the inverse correlation lengths via [16]

ξ−1
i = log(λ0/λi) ' 2πXi/N. (16)

Estimates ofc obtained with the loop model transfer matrix are shown in table 1. They
agree with the result (1) for the honeycomb model. These results were based on even system
sizesL = 2, 4, . . . , 14. A similar analysis on odd systemsL = 3, 5, . . . , 15 yielded the
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amplitudecodd also shown in the table. Its difference withc appears to be32 for all n values.
This constant is interpreted as a scaling dimensionX = 1

8 (compare the factor 12 between
the amplitudes appearing in equations (15) and (16). The table further includes estimates for
Xε (obtained from the second largest translationally invariant eigenvalue) andX1 (obtained
from the largest eigenvalue in the sector with one extra ‘string’ spanning the length of the
cylinder, and corresponding with the spin–spin correlation function). Furthermore, similar
results forX2 (obtained in the sector with two additional O(n) strings) are shown. Both
Xε and X1 are clearly different from the honeycomb case. However,X2 appears to be
equal toXH

1 = XH
2 of the honeycomb model. It seems most likely that the ‘even’ set of

geometric dimensions is shared between the various models, withX2k = XH
2k = XDPL

2k . We
thus see the universal valueν = 1

2 at n = 0. However, the ‘odd’ set of dimensions differ,
just asXH

2k−1 6= XDPL
2k−1. This has significant implications for Hamiltonian walks on the

square lattice, where it follows atn = 0 that γ ' 1.0444. This result is to be compared
with the valuesγ H = 1, γ DPL = 19

16 and γ Man = 1. This configurational exponent is thus
particularly sensitive to the details of the underlying lattice. From table 1 it appears that
Xodd

1 = XDPL
1 . Moreover, our numerical estimates of the dimensionX3 are indicative of the

valueX3 = X1 + g. However, we have not been able to make a convincing guess for the
exact values of the odd scaling dimensions and thus the exact value of the exponentγ .

Table 1. Numerical results for the central chargec and various scaling dimensionsXi from an
analysis using both even and odd system sizes. Corresponding exact results for the honeycomb
FPL and DPL models are also shown below for comparison.

n c codd X1 X2 Xε Xodd
1

0.0 −1.00(1) −2.4977(2) −0.0444(1) 0.000 00(0) 0.573(1)−0.1874(1)
0.5 0.180(5) −1.3188(2) 0.0750(3) 0.138 60(2) 0.6200(5)−0.0790(1)
1.0 1.000(1) −0.5000(1) 0.1667(1) 0.250 0(1) 0.6666(1) 0.0000(0)
1.5 1.59(1) 0.087(5) 0.242(2) 0.350(1) 0.713(1) 0.0616(2)
2.0 2.00(1) 0.500(2) 0.307(2) 0.46(2) 0.76(1) 0.114(5)

n cH = cDPL+1 cH − 3
2 XH

1 = XH
2 XH

2 = XDPL
2 XDPL

ε XDPL
1

0.0 −1 −2.5 0 −0.25 −0.1875
0.5 0.180 −1.320 0.1386 −0.129 −0.0791
1.0 1 −0.5 0.25 0 0
1.5 1.588 0.088 0.3506 0.155 0.0619
2.0 2 0.5 0.5 0.5 0.125

Exact results atn = 1
Some exact information can be obtained for the FPL model atn = 1 via a mapping onto
the ice model. We first divide the lattice sites into two sublattices A and B (see figure 1).
Then, a loop-line passing through an A site is represented by incoming arrows on the A
sites, which are outgoing arrows on the B sites. Conversely, the opposite situation pertains
to the empty bonds—with incoming arrows on B sites and outgoing arrows on A sites.
This gives a one-to-one correspondence between the loop configurations of the FPL model
at n = 1 and the arrow configurations of the six-vertex ice model [17]. However, the
correspondence between eigenvalues in the transfer matrix eigenspectra is only partial. The
loop transfer matrix carries some redundant information atn = 1 because the way in which
the loop segments are interconnected is irrelevant. Thus, we expect that the eigenspectrum
of the loop transfer matrix contains extra eigenvalues which are associated with geometric
properties of the loops, and do not contribute to the thermodynamics. We observe that the
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largest eigenvalue of the FPL model coincides with the largest eigenvalue of the ice model.
It immediately follows that the bulk free energy is given byf∞ = 3

2 log 4
3 and, moreover,

that the central charge isc = 1. The eigenvalues associated with the magnetic and thermal
scaling dimensions are seen to respectively coincide with the leading eigenvalues in the next-
largest and next-next-largest sectors of the ice model transfer matrix. These eigenvalues
are known to have scaling dimensionsXm = m2xp, wherem = 1, 2 andxp = 1

6 for the
ice model [18]. ThusXσ = 1

6 and Xε = 2
3 at n = 1. We have observed that, at least

for the small sizes we could treat, all eigenvalues of the ice-model transfer matrix occur
in the eigenspectra of the O(1) model. Thus the latter must contain as a subset all scaling
dimensions of the former, namelyXm,p = 1

6m2 + 3
2p2.

Table 2. Numerical results for the central chargec of the FPL model on the triangular lattice.
Unlike the honeycomb and square models, the results agree with pure low-temperature O(n)
behaviour. The exact central charge in the DPL phase is shown for comparison.

n c cDPL

0.0 −2.00(1) −2
0.5 −0.81(1) −0.820
1.0 0.00(1) 0
1.5 0.59(1) 0.588
2.0 1.000(5) 1

Entropy atn = 0
We have estimated the free energy density atn = 0, namelyf∞ = 0.387 165(1), on the
basis of even system sizes up toL = 16, and 0.387 164(1) from odd sizes up toL = 15.
These results are a refinement on earlier values [19–21]. An estimate for the ‘entropy’
loss per step due to compactness, relative to the freedom of open configurations, follows as
f∞ − logµ = −0.5829 (cf [21]), whereµ = 2.638 16 for self-avoiding walks on the square
lattice [22]. The corresponding quantity is known exactly,−0.4831. . . , on the honeycomb
lattice [5].

SOS interpretation
In analogy with the honeycomb case, one may interpret the square FPL model as a multi-
component SOS model. One SOS component can be defined as the BCSOS variable
associated with the six-vertex representation. Another SOS variable can be obtained by
viewing the loops as domain walls between regions in which this variable changes by one
unit. The sign of the step can be taken from the direction of the arrow in the vertex
representation as depicted in figure 2(b). Obviously only whenn = 2 are the weights of
these SOS configurations all the same and equal to one.

The triangular FPL model
A similar FPL model (equation (14)) can be defined on the triangular lattice by requiring
that each vertex is visited precisely once by a loop and that all allowed vertices have the
same weight. Transfer-matrix calculations were performed using finite sizes up toL = 7.
We have estimated the free energy density atn = 0 to bef∞ = 0.7395(5). Thus taking the
valueµ = 4.150 76 for self-avoiding walks on the triangular lattice [23], the ‘entropy’ loss
is ' − 0.6838. The finite-size dependence of the free energy was analysed according to
equation (15). The results for the central charge are shown in table 2. They are obviously
different from those of the honeycomb and square models (see, e.g., table 1). Instead, the
triangular model appears to behave as a low-temperature O(n) model. This phenomenon
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can be related to the fact that loops covering an odd number of bonds occur in the triangular
FPL model. Since such loops are absent in the honeycomb and square O(n) models, these
models are invariant under a change of sign of the weight of the empty vertex. Then,
the FPL models are cases of special symmetry leading to the appearance of new universal
behaviour [2]. This symmetry is absent in the triangular FPL model.
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